90 research outputs found

    Environmental Sound Classification with Parallel Temporal-spectral Attention

    Full text link
    Convolutional neural networks (CNN) are one of the best-performing neural network architectures for environmental sound classification (ESC). Recently, temporal attention mechanisms have been used in CNN to capture the useful information from the relevant time frames for audio classification, especially for weakly labelled data where the onset and offset times of the sound events are not applied. In these methods, however, the inherent spectral characteristics and variations are not explicitly exploited when obtaining the deep features. In this paper, we propose a novel parallel temporal-spectral attention mechanism for CNN to learn discriminative sound representations, which enhances the temporal and spectral features by capturing the importance of different time frames and frequency bands. Parallel branches are constructed to allow temporal attention and spectral attention to be applied respectively in order to mitigate interference from the segments without the presence of sound events. The experiments on three environmental sound classification (ESC) datasets and two acoustic scene classification (ASC) datasets show that our method improves the classification performance and also exhibits robustness to noise.Comment: submitted to INTERSPEECH202

    Improving Audio-Text Retrieval via Hierarchical Cross-Modal Interaction and Auxiliary Captions

    Full text link
    Most existing audio-text retrieval (ATR) methods focus on constructing contrastive pairs between whole audio clips and complete caption sentences, while ignoring fine-grained cross-modal relationships, e.g., short segments and phrases or frames and words. In this paper, we introduce a hierarchical cross-modal interaction (HCI) method for ATR by simultaneously exploring clip-sentence, segment-phrase, and frame-word relationships, achieving a comprehensive multi-modal semantic comparison. Besides, we also present a novel ATR framework that leverages auxiliary captions (AC) generated by a pretrained captioner to perform feature interaction between audio and generated captions, which yields enhanced audio representations and is complementary to the original ATR matching branch. The audio and generated captions can also form new audio-text pairs as data augmentation for training. Experiments show that our HCI significantly improves the ATR performance. Moreover, our AC framework also shows stable performance gains on multiple datasets.Comment: Accepted by Interspeech202

    All you need is a second look: Towards Tighter Arbitrary shape text detection

    Full text link
    Deep learning-based scene text detection methods have progressed substantially over the past years. However, there remain several problems to be solved. Generally, long curve text instances tend to be fragmented because of the limited receptive field size of CNN. Besides, simple representations using rectangle or quadrangle bounding boxes fall short when dealing with more challenging arbitrary-shaped texts. In addition, the scale of text instances varies greatly which leads to the difficulty of accurate prediction through a single segmentation network. To address these problems, we innovatively propose a two-stage segmentation based arbitrary text detector named \textit{NASK} (\textbf{N}eed \textbf{A} \textbf{S}econd loo\textbf{K}). Specifically, \textit{NASK} consists of a Text Instance Segmentation network namely \textit{TIS} (1st1^{st} stage), a Text RoI Pooling module and a Fiducial pOint eXpression module termed as \textit{FOX} (2nd2^{nd} stage). Firstly, \textit{TIS} conducts instance segmentation to obtain rectangle text proposals with a proposed Group Spatial and Channel Attention module (\textit{GSCA}) to augment the feature expression. Then, Text RoI Pooling transforms these rectangles to the fixed size. Finally, \textit{FOX} is introduced to reconstruct text instances with a more tighter representation using the predicted geometrical attributes including text center line, text line orientation, character scale and character orientation. Experimental results on two public benchmarks including \textit{Total-Text} and \textit{SCUT-CTW1500} have demonstrated that the proposed \textit{NASK} achieves state-of-the-art results.Comment: 5 pages, 6 figure

    A Global-local Attention Framework for Weakly Labelled Audio Tagging

    Full text link
    Weakly labelled audio tagging aims to predict the classes of sound events within an audio clip, where the onset and offset times of the sound events are not provided. Previous works have used the multiple instance learning (MIL) framework, and exploited the information of the whole audio clip by MIL pooling functions. However, the detailed information of sound events such as their durations may not be considered under this framework. To address this issue, we propose a novel two-stream framework for audio tagging by exploiting the global and local information of sound events. The global stream aims to analyze the whole audio clip in order to capture the local clips that need to be attended using a class-wise selection module. These clips are then fed to the local stream to exploit the detailed information for a better decision. Experimental results on the AudioSet show that our proposed method can significantly improve the performance of audio tagging under different baseline network architectures.Comment: Accepted to ICASSP202

    KCRC-LCD: Discriminative Kernel Collaborative Representation with Locality Constrained Dictionary for Visual Categorization

    Full text link
    We consider the image classification problem via kernel collaborative representation classification with locality constrained dictionary (KCRC-LCD). Specifically, we propose a kernel collaborative representation classification (KCRC) approach in which kernel method is used to improve the discrimination ability of collaborative representation classification (CRC). We then measure the similarities between the query and atoms in the global dictionary in order to construct a locality constrained dictionary (LCD) for KCRC. In addition, we discuss several similarity measure approaches in LCD and further present a simple yet effective unified similarity measure whose superiority is validated in experiments. There are several appealing aspects associated with LCD. First, LCD can be nicely incorporated under the framework of KCRC. The LCD similarity measure can be kernelized under KCRC, which theoretically links CRC and LCD under the kernel method. Second, KCRC-LCD becomes more scalable to both the training set size and the feature dimension. Example shows that KCRC is able to perfectly classify data with certain distribution, while conventional CRC fails completely. Comprehensive experiments on many public datasets also show that KCRC-LCD is a robust discriminative classifier with both excellent performance and good scalability, being comparable or outperforming many other state-of-the-art approaches

    SpecAugment++: A Hidden Space Data Augmentation Method for Acoustic Scene Classification

    Full text link
    In this paper, we present SpecAugment++, a novel data augmentation method for deep neural networks based acoustic scene classification (ASC). Different from other popular data augmentation methods such as SpecAugment and mixup that only work on the input space, SpecAugment++ is applied to both the input space and the hidden space of the deep neural networks to enhance the input and the intermediate feature representations. For an intermediate hidden state, the augmentation techniques consist of masking blocks of frequency channels and masking blocks of time frames, which improve generalization by enabling a model to attend not only to the most discriminative parts of the feature, but also the entire parts. Apart from using zeros for masking, we also examine two approaches for masking based on the use of other samples within the minibatch, which helps introduce noises to the networks to make them more discriminative for classification. The experimental results on the DCASE 2018 Task1 dataset and DCASE 2019 Task1 dataset show that our proposed method can obtain 3.6% and 4.7% accuracy gains over a strong baseline without augmentation (i.e. CP-ResNet) respectively, and outperforms other previous data augmentation methods.Comment: Submitted to Interspeech 202
    • …
    corecore